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J. Phys. A: Math. Gen., Vol. 10, No. 8, 1977. Printed in Great Britain. @ 1977 

Gauge covariant approximations in scalar electrodynamics 

R Delbourgo 
Department of Physics, University of Tasmania, Hobart, Tasmania, Australia 70001 

Received 14 March 1977 

Abstract. In electrodynamics the longitudinal components of all charged-particle Green 
functions are determined by the charged-particle propagator. Inserting these components 
into the Dyson-Schwinger equation, leads to an integral equation for the propagator itself 
which may be solved and used as a basis for an iterative determination of the transverse 
Green functions’ components. We find the solution for electrodynamics of scalar mesons in 
analogy with recent work on spinor electrodynamics. 

1. Introduction 

Scalar electrodynamics is in some respects simpler and in other respects more compli- 
cated than spinor electrodynamics. The simplicity stems from the fact that all the 
y-matrix algebra is absent and therefore all Green functions are straightforward tensor 
functions of the invariants; the complications arise from the existence of quadrilinear 
vertices e24++A2 which increase the multiplicity of graphs that need to be considered 
in any particular order of perturbation theory. One can, of course, get rid of the second 
difficulty by using Kemmer’s p-formalism but the price to be paid is in the resulting 
p -algebra which can be quite difficult to handle for multi-meson amplitudes; therefore 
we shall avoid it in what follows-in any case it ought to be equivalent to the more usual 
formalism. 

Being a gauge theory, electrodynamics is characterised by its particular Ward- 
Takahashi identities, identities such as 

k * A(p)r, (P, P - k )A(p - k) = A(P - k 1 - A ( P )  

k uA(P F U W  (P’k ’ 9  Pk )A( P 1 (1) 
= U P  + k r, (P + k, P M P )  - A(P’)T,  ($9 P - k ) A ( p ’ -  k) 

where the r are the amputated, connected Green functions. These identities determine 
the purely longitudinal pieces of the Green functions in terms of the complete 
renormalised charged-meson propagator A. They thus supply some information about 
the structure of I‘, in spite of the fact that the transverse components remain unknown 
without further explicit evaluation. This information can be used to good effect for 
finding non-perturbative solutions of the field equations which are gauge -covariant. 
Having found these solutions, one can proceed step by step to compute the transverse 
components of F from the Dyson-Schwinger equations. This is the basis of Salam’s 
gauge technique (1963). In an earlier paper (Delbourgo and West 1977), we applied 
the method to spinor electrodynamics and were able to determine the initial spinor 
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propagator and zeroth-order Green functions for starting the iteration scheme. In this 
paper, we wish to exhibit the parallel calculations for scalar meson electrodynamics and 
the similarities with the spinor case. Non-Abelian gauge theories bear a greater 
resemblance to scalar than to spinor electrodynamics and it will be a non-trivial exercise 
to extend our work and cover this case in order to understand better how such 
non-perturbative solutions might possibly lead to quark confinement as suggested by 
Nash and Stuller (1976), and Pagels (1976, 1977). 

2. Zeroth-order Green functions 

The initial Green functions to be used as the basis of an iteration scheme are determined 
solely by A and are defined to reduce to the Born approximation when the charged 
meson line is on mass shell. In analogy with spinor electrodynamics, if we begin with the 
Lehmann spectral representation, 

then the appropriate zeroth-order solutions of the Ward identities (1) are given by 

A“)(p’ )r~~(  p’k  ’, pk)A“’( p )  

In other words, they are spectrally weighted Born terms. The I? satisfy the defining 
properties as one can easily check. It only remains to find the spectral function and this 
we do by means of the Dyson-Schwinger equation for the propagator (figure l), 

A-’(p) = Z,(p’- mi) - ie2Z4 I yp ,  p - k ) A ( p  - k)DF’”(k ) (2p  - k), d4k 1 
+2e4Z, I T,,(p, - k ; p ’ ,  kf)DpA(k)D”A(kf)  d4k d4k’A(p’) 

+photon tadpole term ( 5 )  
if we neglect photon dressing in zeroth order (which, in any case, has no effect on the 
gauge identities). Armed with A‘’), we can go on to compute the transverse components 
in r(l) and in DF,! by iteration in the manner laid out previously (Delbourgo and Salam 
1964, Delbourgo and West 1977), and so on to higher I“”). However, it is important to 

+--- 
‘.-* 

Figure 1. Dyson-Schwinger equation for the meson propagator in scalar electrodynamics. 
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realise that already in zeroth order we are dealing with a non-perturbative gauge- 
covariant approximation of the electrodynamics, one which encompasses previous 
(gauge-deficient) self-consistent methods. 

The zeroth-order equation contained in ( 5 )  is 

d s p ( s )  d4k d4k’  ( 2 p  - k ) , ( 2 p  - 2 k  - k ’ ) y  1 
(p’  -s)k’k’’ ( t)LU - ( p  - k ) ’ - s  ) ( p - k - k ’ ) ’ - s  +2e4 j 

x [ - q A L  + k A k L ( l - a ) / k 2 ] ( - ~ A ”  + k ’ A k ’ ” ( l - a ) / k ’ 2 ]  

+photon tadpole term 

upon adopting a convariant photon gauge specified by parameter a.  More simply, 

Z;’= d s p ( s ) ( p 2 - m g + X ( p 2 ,  s))+photon tadpole term 
P 2 - S  

where X ( p 2 ,  s) is given by the proper diagrams of figure 2 corresponding to an internal 
meson of mass s I”. Picking out the pole term by putting 

p ( s ) = S ( s - m ’ ) + c ( s )  

-0- -c + -Q- ’.-- + -e- 
Figure 2. Absorptive parts of in the integral equation for the meson propagator. 

and making the necessary renormalisations in (6), we are left with the integral equation 

where C is once-subtracted: 

7r (s - m’)(s - p 2  - io)’ 

Upon taking imaginary parts of (7), this then gives the linear equation 

Im Z(s, s’) 
7T(s - S I )  

(s - m ’)c+(s) = (9) 

in complete analogy with the corresponding equation for the spinor case. The only 
difference is that now Im X receives e’ and e4 contributions. 

We can find X by elementary calculation (the appendix gives relevant details). The 
order e 2  contribution is well known but the e 4  term is perhaps not: 
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For a # 3 (any gauge but Yennie’s), it is probably safe to drop the e4 term and obtain an 
explicit solution of the integral equation (9). Adopting dimensionless variables 

5 =(a  -3)e2/16.rr2, z = s/m ’, T ( 2 )  = s(+(s) ( 1  1) 

the equation simplifies to 

(2  - ~ ) T ( z )  = ( ( z  + 1) +5 dz’ ~ ( z ’ ) ( l  + z / z ’ )  J, 
and this can be cast into the differential form, 

As in the spinor case, we recognise a hypergeometric equation and the appropriate 
solution satisfying the boundary conditions, 

25 2 - 1  26 
T(z)=-(-) 2 - 1  p 2 / m 2  F ( a , b ; c ;  1-z),  

with 

a=$[-1+2&-(1 +4t2)’/’] 

b =b[-1+2&+(l+4[2)1/2] 

c =2[ 

incorporates an infrared cut-off (necessary in higher orders of the perturbation series 
in 6). Hence we obtain 

a(W2)= W2-mZ(  25 W2-m2 c L 2  ) 26 F ( a + l , b + l ; c ;  

Since we have dropped the order e4 
proper to make the approximation 

contribution to Im C in deriving (14), it is quite 

a --l+[, b -5 

in the hypergeometric function before comparing this with the spinor case: 

in Landau gauge. At this level the analogy is perfect. Using (14), we can go on to 
determine the meson propagator itself 
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and from the asymptotic expansion as p2 /m2+ CO 

and the identifications 

2,’ =;jym ~ , ’ ( p ’ ) ) ,  etc, 

one can perceive that 2,’ and mi /m2 are logarithmically infinite in the zeroth gauge 
approximation for 6 > 0. 

What of the e4  term in Im 2 which distinguishes scalar from spinor electrodynamics 
and which certainly modifies answer (15)? We have unfortunately been unable to solve 
(9) in complete generality with it included-the problem looks quite intractable at 
present for arbitrary a values. In the Yennie gauge (a = 3), there is a better chance of an 
answer since the e4  term is the only component of the absorptive part: 

ImZ(p’, m’) =cEp4-m4-2m2p’ 1n(p2/m2)I; c x e 4 .  

In terms of the previous variables, the equation for T ( Z )  = S(T(S) then reads 

The best we can do here is to solve (16) in various limits: 
(i) In the infrared region s + m2 or z + 1, we have 

(2 - 1 ) T ( Z )  == $C (2 - 1)’ + C dz’(z‘ - Z ) ’ T ( ~ ’ )  I,‘ 
giving 

T ( Z ) = $ C ( Z  -1)+o(Z -1)’. 

(ii) In the ultraviolet region, s/m’ >> 1 or z + CO, we can approximate equation (16) 
by 

. r ( z ) = = ~ ( l - ~ ) + ] ~ - ~  21112 d y ( l + - + l ) r ( y z ) c .  1 21ny 
Y - Y  

Using the mean value theorem, we verify that T ( Z )  + constant K e 4  in this limit. 
Having exposed the similarity and difference between the gauge covariant solutions 

of spin-0 and spin-; electrodynamics, it will be very interesting next to consider 
analogous gauge covariant solutions for non-Abelian groups. There the fictitious 
particles have spinor-like equations while the gauge fields have scalar-like equations 
and the gauge identities intermix gauge and fictitious particle Green functions. We 
expect that asymptotic freedom will play an important role in that investigation. 
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Appendix 

This is just to spell out the main points in evaluating the phase space integrals and more 
particularly some details connected with the absorptive part of the photon propagator: 

lim {-qwLy6 ( k  ’) + k’k ” [ 6 ( k  - p  ’) - ~ ( k  ’)](I - a ) / p 2 )  
w 2 - 0  

= [ -77 ””6 ( k  ’) - ( 1 - a)k ’ k  ”6’(k 2)]. 

The two-body integral 

- L I m ( l  1 a4kf(2pk, k 2 , p 2 ) / [ ( p - k ) 2 - m 2 ~ ( k 2 - p 2 ) )  
IT 

= ( 2 ~ ) - ~  I d4kf6+[(p-k)2-m’lS+(k2-~2) 

= ( 16.rr2p2)-’f(p2 - m + p2,  p ’, p’) { [p2  - ( m  +p)’]lp2 - (m - p )  2 I) 1/2 

is so familiar as to require no explanation. Derivatives of this with respect to p 2  can be 
used to work out the e’ and some of the e 4  pieces in Im 2. 

The three-body integrals have to be treated somewhat differently because differen- 
tiation of a distribution and the Dalitz region with respect to photon masses is a difficult 
job. Instead, we proceed as follows: in 

R = ( ~ T ) - ’ J  d4k d4k‘6+[(p - k  -k’ )2-m2]6+(k2)6+(k’2)  

we change variables to 

K = k + k ’ ,  q = i ( k  - k ’ )  

S(a)G(b)= 2 6 ( a  +b)6(a  -!I)* 

and use the identity 

Also we can choose frames such that 

p w  = ( p  ; 0,090) 
K, = ( K  cosh x; 0, 0, K sinh x )  

whereupon R reduces to the integral 

1 
R=-J 64.rr3p dK’ dq2 dqo S(iK2+q2) 

subject to 0 < K < p  - m and 

qz 6 -4’ sinh’ x = [ ( p  - m)’ - K 2 ] [ ( p  + m)’ - K 2 ] /  16p’ 

Hence 

where t = ( p  - k)’ and U = ( p  - I c ’ ) ~  are the Mandelstam variables in the decay region 
bounded by tu = m ’p’ and t + u = m2 + p 2 .  
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In this fashion we can treat the trickier problem of finding 

Rf’=(2r)-’  d4k d4kf S+[(p-k-k’)’-m2](k. k’)2S:(k2)SL(k’2). 

Changing variables as before and putting 

6’(a)S’(b) = 2[S”(a +b)S(a  -b) -S”(a  -b)S(a + b ) ]  

the integral boils down to 

R ” = - I  1 dK2dq2dqo($K2-q2)26”(&2+q2) 
2 5 6 ~  p 

- - dK{[(p-m)2-K2][(p+m)2-K 2 1) 1/2 (-q2)1/2 
128T3P2 

x (iK2-q2)2S”(iK2+q2) dq2 

512r3p2 J J  
This makes the origin of 

- - 

the various terms in (10) more comprehensible. 
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